Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Beeckman
1
61 kgGobillot
2
58 kgBidot
4
78 kgGérard
5
61 kgCuvelier
6
65 kgFrantz
7
78 kgMagne
8
74 kgNeuhard
9
67 kgGerbaud
11
76 kgBachellerie
12
76 kgFlahaut
13
64 kgMoulet
15
79 kgCanova
16
71 kgPetre
21
82 kgLafosse
22
70 kgBesnier
23
65 kgToussaint
25
68 kgBernard
29
69 kgPhilippe
31
68 kgGarin
32
54 kg
1
61 kgGobillot
2
58 kgBidot
4
78 kgGérard
5
61 kgCuvelier
6
65 kgFrantz
7
78 kgMagne
8
74 kgNeuhard
9
67 kgGerbaud
11
76 kgBachellerie
12
76 kgFlahaut
13
64 kgMoulet
15
79 kgCanova
16
71 kgPetre
21
82 kgLafosse
22
70 kgBesnier
23
65 kgToussaint
25
68 kgBernard
29
69 kgPhilippe
31
68 kgGarin
32
54 kg
Weight (KG) →
Result →
82
54
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | BEECKMAN Théophile | 61 |
2 | GOBILLOT Marcel | 58 |
4 | BIDOT Marcel | 78 |
5 | GÉRARD René | 61 |
6 | CUVELIER Georges | 65 |
7 | FRANTZ Nicolas | 78 |
8 | MAGNE Antonin | 74 |
9 | NEUHARD Ernest | 67 |
11 | GERBAUD Robert | 76 |
12 | BACHELLERIE Pierre | 76 |
13 | FLAHAUT Albert | 64 |
15 | MOULET Fernand | 79 |
16 | CANOVA Giovanni | 71 |
21 | PETRE Edouard | 82 |
22 | LAFOSSE Victor | 70 |
23 | BESNIER Fernand | 65 |
25 | TOUSSAINT Adrien | 68 |
29 | BERNARD René | 69 |
31 | PHILIPPE André | 68 |
32 | GARIN Charles | 54 |