Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.7 * weight + 160
This means that on average for every extra kilogram weight a rider loses -1.7 positions in the result.
Geslin
2
68 kgKern
5
72 kgLangella
7
76 kgDuret
14
62 kgHary
15
68 kgChavanel
16
77 kgMoinard
18
69 kgMayoz
20
62 kgLequatre
22
64 kgDuclos-Lassalle
24
63 kgEstadieu
46
67 kgRenier
57
69 kgDelpech
64
72 kgBordenave
66
55 kgLelay
68
67 kgSweet
70
69 kgDupouey
81
60 kgNaibo
89
62 kgCoutouly
91
72 kgHernández
93
64 kg
2
68 kgKern
5
72 kgLangella
7
76 kgDuret
14
62 kgHary
15
68 kgChavanel
16
77 kgMoinard
18
69 kgMayoz
20
62 kgLequatre
22
64 kgDuclos-Lassalle
24
63 kgEstadieu
46
67 kgRenier
57
69 kgDelpech
64
72 kgBordenave
66
55 kgLelay
68
67 kgSweet
70
69 kgDupouey
81
60 kgNaibo
89
62 kgCoutouly
91
72 kgHernández
93
64 kg
Weight (KG) →
Result →
77
55
2
93
# | Rider | Weight (KG) |
---|---|---|
2 | GESLIN Anthony | 68 |
5 | KERN Christophe | 72 |
7 | LANGELLA Anthony | 76 |
14 | DURET Sébastien | 62 |
15 | HARY Maryan | 68 |
16 | CHAVANEL Sébastien | 77 |
18 | MOINARD Amaël | 69 |
20 | MAYOZ Iban | 62 |
22 | LEQUATRE Geoffroy | 64 |
24 | DUCLOS-LASSALLE Hervé | 63 |
46 | ESTADIEU Laurent | 67 |
57 | RENIER Franck | 69 |
64 | DELPECH Jean-Luc | 72 |
66 | BORDENAVE Philippe | 55 |
68 | LELAY David | 67 |
70 | SWEET Jay | 69 |
81 | DUPOUEY Christophe | 60 |
89 | NAIBO Carl | 62 |
91 | COUTOULY Cédric | 72 |
93 | HERNÁNDEZ Aitor | 64 |