Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 79
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Hernández
2
64 kgGeslin
3
68 kgMoinard
4
69 kgRenier
7
69 kgLangella
13
76 kgLequatre
14
64 kgHary
16
68 kgChavanel
18
77 kgKern
21
72 kgDuret
26
62 kgDupouey
28
60 kgMayoz
34
62 kgLelay
37
67 kgBordenave
56
55 kgNaibo
63
62 kgEstadieu
65
67 kgDuclos-Lassalle
71
63 kgCoutouly
72
72 kgSweet
78
69 kgDelpech
83
72 kg
2
64 kgGeslin
3
68 kgMoinard
4
69 kgRenier
7
69 kgLangella
13
76 kgLequatre
14
64 kgHary
16
68 kgChavanel
18
77 kgKern
21
72 kgDuret
26
62 kgDupouey
28
60 kgMayoz
34
62 kgLelay
37
67 kgBordenave
56
55 kgNaibo
63
62 kgEstadieu
65
67 kgDuclos-Lassalle
71
63 kgCoutouly
72
72 kgSweet
78
69 kgDelpech
83
72 kg
Weight (KG) →
Result →
77
55
2
83
# | Rider | Weight (KG) |
---|---|---|
2 | HERNÁNDEZ Aitor | 64 |
3 | GESLIN Anthony | 68 |
4 | MOINARD Amaël | 69 |
7 | RENIER Franck | 69 |
13 | LANGELLA Anthony | 76 |
14 | LEQUATRE Geoffroy | 64 |
16 | HARY Maryan | 68 |
18 | CHAVANEL Sébastien | 77 |
21 | KERN Christophe | 72 |
26 | DURET Sébastien | 62 |
28 | DUPOUEY Christophe | 60 |
34 | MAYOZ Iban | 62 |
37 | LELAY David | 67 |
56 | BORDENAVE Philippe | 55 |
63 | NAIBO Carl | 62 |
65 | ESTADIEU Laurent | 67 |
71 | DUCLOS-LASSALLE Hervé | 63 |
72 | COUTOULY Cédric | 72 |
78 | SWEET Jay | 69 |
83 | DELPECH Jean-Luc | 72 |