Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.8 * weight + 180
This means that on average for every extra kilogram weight a rider loses -1.8 positions in the result.
Induráin
1
76 kgRoche
3
74 kgLeMond
4
67 kgFignon
6
67 kgMadiot
7
68 kgWinnen
25
60 kgLelli
39
69 kgWechselberger
45
71 kgMarie
47
68 kgBreukink
52
70 kgMejia
53
63 kgMadouas
64
70 kgNevens
67
58 kgMurguialday
76
58 kgGianetti
79
62 kgBauer
83
72 kgWalton
89
68 kgArntz
95
70 kgTolhoek
96
63 kgHarmeling
97
76 kgBugno
104
68 kgArroyo
121
59 kg
1
76 kgRoche
3
74 kgLeMond
4
67 kgFignon
6
67 kgMadiot
7
68 kgWinnen
25
60 kgLelli
39
69 kgWechselberger
45
71 kgMarie
47
68 kgBreukink
52
70 kgMejia
53
63 kgMadouas
64
70 kgNevens
67
58 kgMurguialday
76
58 kgGianetti
79
62 kgBauer
83
72 kgWalton
89
68 kgArntz
95
70 kgTolhoek
96
63 kgHarmeling
97
76 kgBugno
104
68 kgArroyo
121
59 kg
Weight (KG) →
Result →
76
58
1
121
# | Rider | Weight (KG) |
---|---|---|
1 | INDURÁIN Miguel | 76 |
3 | ROCHE Stephen | 74 |
4 | LEMOND Greg | 67 |
6 | FIGNON Laurent | 67 |
7 | MADIOT Marc | 68 |
25 | WINNEN Peter | 60 |
39 | LELLI Massimiliano | 69 |
45 | WECHSELBERGER Helmut | 71 |
47 | MARIE Thierry | 68 |
52 | BREUKINK Erik | 70 |
53 | MEJIA Alvaro | 63 |
64 | MADOUAS Laurent | 70 |
67 | NEVENS Jan | 58 |
76 | MURGUIALDAY Javier | 58 |
79 | GIANETTI Mauro | 62 |
83 | BAUER Steve | 72 |
89 | WALTON Brian | 68 |
95 | ARNTZ Marcel | 70 |
96 | TOLHOEK Patrick | 63 |
97 | HARMELING Rob | 76 |
104 | BUGNO Gianni | 68 |
121 | ARROYO Miguel | 59 |