Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Brasi
1
67 kgDietz
2
69 kgde Jongh
4
76 kgLeysen
6
75 kgNiermann
16
64 kgSweet
18
69 kgMifune
35
70 kgGlasner
42
72 kgKjærgaard
45
74 kgGrabsch
49
81 kgPospyeyev
50
71 kgHruška
59
62 kgTanner
60
70 kgZabel
65
69 kgRiis
68
71 kgHolm Sørensen
74
77 kgBomans
78
74 kgLombardi
80
73 kgPankov
84
72 kgUshakov
87
73 kgKonečný
91
67 kg
1
67 kgDietz
2
69 kgde Jongh
4
76 kgLeysen
6
75 kgNiermann
16
64 kgSweet
18
69 kgMifune
35
70 kgGlasner
42
72 kgKjærgaard
45
74 kgGrabsch
49
81 kgPospyeyev
50
71 kgHruška
59
62 kgTanner
60
70 kgZabel
65
69 kgRiis
68
71 kgHolm Sørensen
74
77 kgBomans
78
74 kgLombardi
80
73 kgPankov
84
72 kgUshakov
87
73 kgKonečný
91
67 kg
Weight (KG) →
Result →
81
62
1
91
# | Rider | Weight (KG) |
---|---|---|
1 | BRASI Rossano | 67 |
2 | DIETZ Bert | 69 |
4 | DE JONGH Steven | 76 |
6 | LEYSEN Bart | 75 |
16 | NIERMANN Grischa | 64 |
18 | SWEET Jay | 69 |
35 | MIFUNE Masahiko | 70 |
42 | GLASNER Björn | 72 |
45 | KJÆRGAARD Steffen | 74 |
49 | GRABSCH Ralf | 81 |
50 | POSPYEYEV Kyrylo | 71 |
59 | HRUŠKA Jan | 62 |
60 | TANNER John | 70 |
65 | ZABEL Erik | 69 |
68 | RIIS Bjarne | 71 |
74 | HOLM SØRENSEN Brian | 77 |
78 | BOMANS Carlo | 74 |
80 | LOMBARDI Giovanni | 73 |
84 | PANKOV Oleg | 72 |
87 | USHAKOV Serhiy | 73 |
91 | KONEČNÝ Tomáš | 67 |