Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 28
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Pibernik
1
60 kgKönig
2
62 kgPolanc
4
62 kgVakoč
6
68 kgAlaphilippe
7
62 kgBernas
8
77 kgStachowiak
10
62 kgVermeersch
11
68 kgPauwels
12
60 kgHoelgaard
14
77 kgGuldhammer
15
66 kgAlafaci
16
77 kgMarycz
17
69 kgSénéchal
18
77 kgPolnický
19
68 kgSpokes
20
63 kgBárta
21
75 kgKragh Andersen
22
72 kgRiesebeek
24
78 kgCieślik
25
65 kgGradek
26
83 kgHollanders
30
70 kg
1
60 kgKönig
2
62 kgPolanc
4
62 kgVakoč
6
68 kgAlaphilippe
7
62 kgBernas
8
77 kgStachowiak
10
62 kgVermeersch
11
68 kgPauwels
12
60 kgHoelgaard
14
77 kgGuldhammer
15
66 kgAlafaci
16
77 kgMarycz
17
69 kgSénéchal
18
77 kgPolnický
19
68 kgSpokes
20
63 kgBárta
21
75 kgKragh Andersen
22
72 kgRiesebeek
24
78 kgCieślik
25
65 kgGradek
26
83 kgHollanders
30
70 kg
Weight (KG) →
Result →
83
60
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | PIBERNIK Luka | 60 |
2 | KÖNIG Leopold | 62 |
4 | POLANC Jan | 62 |
6 | VAKOČ Petr | 68 |
7 | ALAPHILIPPE Julian | 62 |
8 | BERNAS Paweł | 77 |
10 | STACHOWIAK Adam | 62 |
11 | VERMEERSCH Gianni | 68 |
12 | PAUWELS Kevin | 60 |
14 | HOELGAARD Daniel | 77 |
15 | GULDHAMMER Rasmus | 66 |
16 | ALAFACI Eugenio | 77 |
17 | MARYCZ Jarosław | 69 |
18 | SÉNÉCHAL Florian | 77 |
19 | POLNICKÝ Jiří | 68 |
20 | SPOKES Samuel | 63 |
21 | BÁRTA Jan | 75 |
22 | KRAGH ANDERSEN Asbjørn | 72 |
24 | RIESEBEEK Oscar | 78 |
25 | CIEŚLIK Paweł | 65 |
26 | GRADEK Kamil | 83 |
30 | HOLLANDERS Dries | 70 |