Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 8
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Lammertink
2
61 kgHirt
3
62 kgMortensen
4
70 kgBaldo
5
73 kgBernas
6
77 kgvan Ginneken
7
72 kgPower
8
68 kgHník
9
57 kgAaen Jørgensen
10
63 kgGroen
11
70.5 kgTaciak
13
68 kgCarbel
14
73 kgStępniak
16
75 kgHonig
17
61 kgSchachmann
20
71 kgZangerle
23
63 kgVermeltfoort
24
85 kgMarycz
25
69 kg
2
61 kgHirt
3
62 kgMortensen
4
70 kgBaldo
5
73 kgBernas
6
77 kgvan Ginneken
7
72 kgPower
8
68 kgHník
9
57 kgAaen Jørgensen
10
63 kgGroen
11
70.5 kgTaciak
13
68 kgCarbel
14
73 kgStępniak
16
75 kgHonig
17
61 kgSchachmann
20
71 kgZangerle
23
63 kgVermeltfoort
24
85 kgMarycz
25
69 kg
Weight (KG) →
Result →
85
57
2
25
# | Rider | Weight (KG) |
---|---|---|
2 | LAMMERTINK Maurits | 61 |
3 | HIRT Jan | 62 |
4 | MORTENSEN Martin | 70 |
5 | BALDO Nicolas | 73 |
6 | BERNAS Paweł | 77 |
7 | VAN GINNEKEN Sjoerd | 72 |
8 | POWER Robert | 68 |
9 | HNÍK Karel | 57 |
10 | AAEN JØRGENSEN Jonas | 63 |
11 | GROEN Ike | 70.5 |
13 | TACIAK Mateusz | 68 |
14 | CARBEL Michael | 73 |
16 | STĘPNIAK Grzegorz | 75 |
17 | HONIG Reinier | 61 |
20 | SCHACHMANN Maximilian | 71 |
23 | ZANGERLE Joel | 63 |
24 | VERMELTFOORT Coen | 85 |
25 | MARYCZ Jarosław | 69 |