Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 14
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Riesebeek
1
78 kgRogina
6
70 kgKönig
7
62 kgRabitsch
8
69 kgHirt
9
62 kgSchillinger
10
72 kgTratnik
11
67 kgMartins
12
70 kgPozdnyakov
13
67 kgBárta
14
75 kgBosman
16
68 kgŠtybar
17
68 kgKvasina
18
72 kgKrul
19
68 kgJanssen
20
76 kgGradek
21
83 kgHník
23
57 kgPodlaski
24
68 kgKeisse
25
72 kg
1
78 kgRogina
6
70 kgKönig
7
62 kgRabitsch
8
69 kgHirt
9
62 kgSchillinger
10
72 kgTratnik
11
67 kgMartins
12
70 kgPozdnyakov
13
67 kgBárta
14
75 kgBosman
16
68 kgŠtybar
17
68 kgKvasina
18
72 kgKrul
19
68 kgJanssen
20
76 kgGradek
21
83 kgHník
23
57 kgPodlaski
24
68 kgKeisse
25
72 kg
Weight (KG) →
Result →
83
57
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | RIESEBEEK Oscar | 78 |
6 | ROGINA Radoslav | 70 |
7 | KÖNIG Leopold | 62 |
8 | RABITSCH Stephan | 69 |
9 | HIRT Jan | 62 |
10 | SCHILLINGER Andreas | 72 |
11 | TRATNIK Jan | 67 |
12 | MARTINS Uri | 70 |
13 | POZDNYAKOV Kirill | 67 |
14 | BÁRTA Jan | 75 |
16 | BOSMAN Gert-Jan | 68 |
17 | ŠTYBAR Zdeněk | 68 |
18 | KVASINA Matija | 72 |
19 | KRUL Stef | 68 |
20 | JANSSEN Adriaan | 76 |
21 | GRADEK Kamil | 83 |
23 | HNÍK Karel | 57 |
24 | PODLASKI Michał | 68 |
25 | KEISSE Iljo | 72 |