Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Modolo
1
67 kgWippert
2
75 kgMalucelli
3
68 kgFedeli
4
65 kgvan der Poel
5
75 kgPlanckaert
6
65 kgKaňkovský
7
83 kgStachowiak
8
62 kgMalaguti
9
67 kgKatrašnik
10
69 kgGarcía Cortina
12
77 kgLecroq
13
70 kgAriesen
14
70 kgMaikin
15
68 kgVerschoor
16
74.5 kgCavagna
17
78 kgBaestaens
19
68 kg
1
67 kgWippert
2
75 kgMalucelli
3
68 kgFedeli
4
65 kgvan der Poel
5
75 kgPlanckaert
6
65 kgKaňkovský
7
83 kgStachowiak
8
62 kgMalaguti
9
67 kgKatrašnik
10
69 kgGarcía Cortina
12
77 kgLecroq
13
70 kgAriesen
14
70 kgMaikin
15
68 kgVerschoor
16
74.5 kgCavagna
17
78 kgBaestaens
19
68 kg
Weight (KG) →
Result →
83
62
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | MODOLO Sacha | 67 |
2 | WIPPERT Wouter | 75 |
3 | MALUCELLI Matteo | 68 |
4 | FEDELI Alessandro | 65 |
5 | VAN DER POEL David | 75 |
6 | PLANCKAERT Baptiste | 65 |
7 | KAŇKOVSKÝ Alois | 83 |
8 | STACHOWIAK Adam | 62 |
9 | MALAGUTI Alessandro | 67 |
10 | KATRAŠNIK Gašper | 69 |
12 | GARCÍA CORTINA Iván | 77 |
13 | LECROQ Jérémy | 70 |
14 | ARIESEN Johim | 70 |
15 | MAIKIN Roman | 68 |
16 | VERSCHOOR Martijn | 74.5 |
17 | CAVAGNA Rémi | 78 |
19 | BAESTAENS Vincent | 68 |