Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Maestri
2
73 kgZoidl
3
63 kgLehner
4
63 kgAbrahamsen
5
78 kgTræen
6
63 kgChzhan
7
71 kgZardini
9
62 kgKurek
12
80 kgvan der Tuuk
13
64 kgKukrle
14
73 kgSaramotins
15
75 kgSleen
16
65 kgSbaragli
17
74 kgHrinkow
18
61 kgPelikán
19
76 kgTsoy
20
73 kgYamamoto
21
63 kgBarbin
22
60 kgVelasco
23
59 kgIribe
24
61 kg
2
73 kgZoidl
3
63 kgLehner
4
63 kgAbrahamsen
5
78 kgTræen
6
63 kgChzhan
7
71 kgZardini
9
62 kgKurek
12
80 kgvan der Tuuk
13
64 kgKukrle
14
73 kgSaramotins
15
75 kgSleen
16
65 kgSbaragli
17
74 kgHrinkow
18
61 kgPelikán
19
76 kgTsoy
20
73 kgYamamoto
21
63 kgBarbin
22
60 kgVelasco
23
59 kgIribe
24
61 kg
Weight (KG) →
Result →
80
59
2
24
# | Rider | Weight (KG) |
---|---|---|
2 | MAESTRI Mirco | 73 |
3 | ZOIDL Riccardo | 63 |
4 | LEHNER Daniel | 63 |
5 | ABRAHAMSEN Jonas | 78 |
6 | TRÆEN Torstein | 63 |
7 | CHZHAN Igor | 71 |
9 | ZARDINI Edoardo | 62 |
12 | KUREK Adrian | 80 |
13 | VAN DER TUUK Danny | 64 |
14 | KUKRLE Michael | 73 |
15 | SARAMOTINS Aleksejs | 75 |
16 | SLEEN Torjus | 65 |
17 | SBARAGLI Kristian | 74 |
18 | HRINKOW Dominik | 61 |
19 | PELIKÁN János | 76 |
20 | TSOY Vladimir | 73 |
21 | YAMAMOTO Masaki | 63 |
22 | BARBIN Enrico | 60 |
23 | VELASCO Simone | 59 |
24 | IRIBE Shotaro | 61 |