Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Archbold
1
79 kgImpey
2
72 kgvan den Berg
3
73 kgBaška
4
74 kgSteimle
6
73 kgPaterski
7
73 kgGroßschartner
8
64 kgBajc
9
65 kgHamilton
10
71 kgTracz
11
74 kgStüssi
12
68 kgPfingsten
13
69 kgNeuman
14
72 kgSchillinger
15
72 kgMałecki
17
69 kgBouwmans
18
64 kgKrul
19
75 kg
1
79 kgImpey
2
72 kgvan den Berg
3
73 kgBaška
4
74 kgSteimle
6
73 kgPaterski
7
73 kgGroßschartner
8
64 kgBajc
9
65 kgHamilton
10
71 kgTracz
11
74 kgStüssi
12
68 kgPfingsten
13
69 kgNeuman
14
72 kgSchillinger
15
72 kgMałecki
17
69 kgBouwmans
18
64 kgKrul
19
75 kg
Weight (KG) →
Result →
79
64
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | ARCHBOLD Shane | 79 |
2 | IMPEY Daryl | 72 |
3 | VAN DEN BERG Marijn | 73 |
4 | BAŠKA Erik | 74 |
6 | STEIMLE Jannik | 73 |
7 | PATERSKI Maciej | 73 |
8 | GROßSCHARTNER Felix | 64 |
9 | BAJC Andi | 65 |
10 | HAMILTON Lucas | 71 |
11 | TRACZ Szymon | 74 |
12 | STÜSSI Colin | 68 |
13 | PFINGSTEN Christoph | 69 |
14 | NEUMAN Dominik | 72 |
15 | SCHILLINGER Andreas | 72 |
17 | MAŁECKI Kamil | 69 |
18 | BOUWMANS Dylan | 64 |
19 | KRUL Wessel | 75 |