Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Meeus
1
80 kgMerlier
2
76 kgKanter
3
68 kgKooij
4
72 kgDe Bie
5
65 kgHoelgaard
6
77 kgCapiot
7
69 kgBouwman
8
60 kgNeuman
9
72 kgBaška
10
74 kgGroves
11
76 kgLarsen
12
74 kgFabbro
13
52 kgVan Rooy
14
70 kgDenz
15
71 kgBárta
16
79 kgEenkhoorn
17
72 kgVan den Bossche
18
63 kgWillems
19
67 kgNieuwenhuis
20
71 kgAsselman
22
69 kg
1
80 kgMerlier
2
76 kgKanter
3
68 kgKooij
4
72 kgDe Bie
5
65 kgHoelgaard
6
77 kgCapiot
7
69 kgBouwman
8
60 kgNeuman
9
72 kgBaška
10
74 kgGroves
11
76 kgLarsen
12
74 kgFabbro
13
52 kgVan Rooy
14
70 kgDenz
15
71 kgBárta
16
79 kgEenkhoorn
17
72 kgVan den Bossche
18
63 kgWillems
19
67 kgNieuwenhuis
20
71 kgAsselman
22
69 kg
Weight (KG) →
Result →
80
52
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | MEEUS Jordi | 80 |
2 | MERLIER Tim | 76 |
3 | KANTER Max | 68 |
4 | KOOIJ Olav | 72 |
5 | DE BIE Sean | 65 |
6 | HOELGAARD Daniel | 77 |
7 | CAPIOT Amaury | 69 |
8 | BOUWMAN Koen | 60 |
9 | NEUMAN Dominik | 72 |
10 | BAŠKA Erik | 74 |
11 | GROVES Kaden | 76 |
12 | LARSEN Niklas | 74 |
13 | FABBRO Matteo | 52 |
14 | VAN ROOY Kenneth | 70 |
15 | DENZ Nico | 71 |
16 | BÁRTA Tomáš | 79 |
17 | EENKHOORN Pascal | 72 |
18 | VAN DEN BOSSCHE Fabio | 63 |
19 | WILLEMS Thimo | 67 |
20 | NIEUWENHUIS Joris | 71 |
22 | ASSELMAN Jesper | 69 |