Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 75
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Johansen
1
78 kgVinther
3
68 kgSørensen
4
71 kgBreschel
6
70 kgBak
10
76 kgJørgensen
11
60 kgPiil
13
65 kgHøj
19
80 kgVandborg
27
75 kgSteensen
31
65 kgBlaudzun
43
66 kgMørkøv
44
71 kgSørensen
46
64 kgReihs
47
75 kgNissen
54
65 kgMortensen
56
70 kgNielsen
62
66 kgLund
63
65 kgMichaelsen
67
79 kgKlostergaard
80
69 kg
1
78 kgVinther
3
68 kgSørensen
4
71 kgBreschel
6
70 kgBak
10
76 kgJørgensen
11
60 kgPiil
13
65 kgHøj
19
80 kgVandborg
27
75 kgSteensen
31
65 kgBlaudzun
43
66 kgMørkøv
44
71 kgSørensen
46
64 kgReihs
47
75 kgNissen
54
65 kgMortensen
56
70 kgNielsen
62
66 kgLund
63
65 kgMichaelsen
67
79 kgKlostergaard
80
69 kg
Weight (KG) →
Result →
80
60
1
80
# | Rider | Weight (KG) |
---|---|---|
1 | JOHANSEN Allan | 78 |
3 | VINTHER Troels Rønning | 68 |
4 | SØRENSEN Nicki | 71 |
6 | BRESCHEL Matti | 70 |
10 | BAK Lars Ytting | 76 |
11 | JØRGENSEN René | 60 |
13 | PIIL Jakob Storm | 65 |
19 | HØJ Frank | 80 |
27 | VANDBORG Brian Bach | 75 |
31 | STEENSEN André | 65 |
43 | BLAUDZUN Michael | 66 |
44 | MØRKØV Michael | 71 |
46 | SØRENSEN Chris Anker | 64 |
47 | REIHS Michael | 75 |
54 | NISSEN Søren | 65 |
56 | MORTENSEN Martin | 70 |
62 | NIELSEN Klaus | 66 |
63 | LUND Anders | 65 |
67 | MICHAELSEN Lars | 79 |
80 | KLOSTERGAARD Kasper | 69 |