Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 30
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Rasmussen
1
88 kgAaen Jørgensen
3
63 kgSørensen
4
71 kgVinther
5
68 kgPedersen
6
62 kgJohansen
8
78 kgHøj
16
80 kgKvist
20
68 kgLund
21
65 kgSørensen
26
64 kgBlaudzun
27
66 kgJørgensen
33
60 kgRasmussen
36
58 kgVandborg
41
75 kgBreschel
44
70 kgMortensen
47
70 kgReihs
51
75 kgMoberg Jørgensen
58
73 kgMørkøv
62
71 kgBak
64
76 kgKlostergaard
65
69 kg
1
88 kgAaen Jørgensen
3
63 kgSørensen
4
71 kgVinther
5
68 kgPedersen
6
62 kgJohansen
8
78 kgHøj
16
80 kgKvist
20
68 kgLund
21
65 kgSørensen
26
64 kgBlaudzun
27
66 kgJørgensen
33
60 kgRasmussen
36
58 kgVandborg
41
75 kgBreschel
44
70 kgMortensen
47
70 kgReihs
51
75 kgMoberg Jørgensen
58
73 kgMørkøv
62
71 kgBak
64
76 kgKlostergaard
65
69 kg
Weight (KG) →
Result →
88
58
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | RASMUSSEN Alex | 88 |
3 | AAEN JØRGENSEN Jonas | 63 |
4 | SØRENSEN Nicki | 71 |
5 | VINTHER Troels Rønning | 68 |
6 | PEDERSEN Martin | 62 |
8 | JOHANSEN Allan | 78 |
16 | HØJ Frank | 80 |
20 | KVIST Thomas Vedel | 68 |
21 | LUND Anders | 65 |
26 | SØRENSEN Chris Anker | 64 |
27 | BLAUDZUN Michael | 66 |
33 | JØRGENSEN René | 60 |
36 | RASMUSSEN Michael | 58 |
41 | VANDBORG Brian Bach | 75 |
44 | BRESCHEL Matti | 70 |
47 | MORTENSEN Martin | 70 |
51 | REIHS Michael | 75 |
58 | MOBERG JØRGENSEN Christian | 73 |
62 | MØRKØV Michael | 71 |
64 | BAK Lars Ytting | 76 |
65 | KLOSTERGAARD Kasper | 69 |