Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Breschel
1
70 kgSørensen
2
64 kgHøj
3
80 kgVandborg
4
75 kgPedersen
5
62 kgJørgensen
6
60 kgSørensen
7
71 kgRasmussen
8
88 kgMortensen
9
70 kgJuul-Jensen
10
73 kgJohansen
13
78 kgGuldhammer
14
66 kgFuglsang
15
67 kgMørkøv
18
71 kgLund
19
65 kgVinther
20
68 kgReihs
28
75 kg
1
70 kgSørensen
2
64 kgHøj
3
80 kgVandborg
4
75 kgPedersen
5
62 kgJørgensen
6
60 kgSørensen
7
71 kgRasmussen
8
88 kgMortensen
9
70 kgJuul-Jensen
10
73 kgJohansen
13
78 kgGuldhammer
14
66 kgFuglsang
15
67 kgMørkøv
18
71 kgLund
19
65 kgVinther
20
68 kgReihs
28
75 kg
Weight (KG) →
Result →
88
60
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | BRESCHEL Matti | 70 |
2 | SØRENSEN Chris Anker | 64 |
3 | HØJ Frank | 80 |
4 | VANDBORG Brian Bach | 75 |
5 | PEDERSEN Martin | 62 |
6 | JØRGENSEN René | 60 |
7 | SØRENSEN Nicki | 71 |
8 | RASMUSSEN Alex | 88 |
9 | MORTENSEN Martin | 70 |
10 | JUUL-JENSEN Christopher | 73 |
13 | JOHANSEN Allan | 78 |
14 | GULDHAMMER Rasmus | 66 |
15 | FUGLSANG Jakob | 67 |
18 | MØRKØV Michael | 71 |
19 | LUND Anders | 65 |
20 | VINTHER Troels Rønning | 68 |
28 | REIHS Michael | 75 |