Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Sørensen
1
71 kgBak
2
76 kgLund
3
65 kgMortensen
4
70 kgSørensen
5
64 kgChristensen
6
69 kgBreschel
7
70 kgJørgensen
8
60 kgMørkøv
11
71 kgHøj
12
80 kgJuul-Jensen
16
73 kgRasmussen
24
88 kgKvist
25
68 kgPedersen
26
62 kgVandborg
29
75 kgSteensen
33
65 kgKlostergaard
41
69 kgGuldhammer
42
66 kgAaen Jørgensen
54
63 kg
1
71 kgBak
2
76 kgLund
3
65 kgMortensen
4
70 kgSørensen
5
64 kgChristensen
6
69 kgBreschel
7
70 kgJørgensen
8
60 kgMørkøv
11
71 kgHøj
12
80 kgJuul-Jensen
16
73 kgRasmussen
24
88 kgKvist
25
68 kgPedersen
26
62 kgVandborg
29
75 kgSteensen
33
65 kgKlostergaard
41
69 kgGuldhammer
42
66 kgAaen Jørgensen
54
63 kg
Weight (KG) →
Result →
88
60
1
54
# | Rider | Weight (KG) |
---|---|---|
1 | SØRENSEN Nicki | 71 |
2 | BAK Lars Ytting | 76 |
3 | LUND Anders | 65 |
4 | MORTENSEN Martin | 70 |
5 | SØRENSEN Chris Anker | 64 |
6 | CHRISTENSEN Mads | 69 |
7 | BRESCHEL Matti | 70 |
8 | JØRGENSEN René | 60 |
11 | MØRKØV Michael | 71 |
12 | HØJ Frank | 80 |
16 | JUUL-JENSEN Christopher | 73 |
24 | RASMUSSEN Alex | 88 |
25 | KVIST Thomas Vedel | 68 |
26 | PEDERSEN Martin | 62 |
29 | VANDBORG Brian Bach | 75 |
33 | STEENSEN André | 65 |
41 | KLOSTERGAARD Kasper | 69 |
42 | GULDHAMMER Rasmus | 66 |
54 | AAEN JØRGENSEN Jonas | 63 |