Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 16
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Lander
1
70 kgSørensen
2
71 kgSteensen
3
65 kgValgren
4
71 kgSørensen
5
64 kgFuglsang
6
67 kgMortensen
7
70 kgCort
8
68 kgChristensen
9
69 kgMørkøv
11
71 kgLund
24
65 kgAaen Jørgensen
25
63 kgVandborg
26
75 kgKlostergaard
27
69 kgVinther
28
68 kgMoberg Jørgensen
30
73 kgJuul-Jensen
31
73 kgMadsen
36
67 kg
1
70 kgSørensen
2
71 kgSteensen
3
65 kgValgren
4
71 kgSørensen
5
64 kgFuglsang
6
67 kgMortensen
7
70 kgCort
8
68 kgChristensen
9
69 kgMørkøv
11
71 kgLund
24
65 kgAaen Jørgensen
25
63 kgVandborg
26
75 kgKlostergaard
27
69 kgVinther
28
68 kgMoberg Jørgensen
30
73 kgJuul-Jensen
31
73 kgMadsen
36
67 kg
Weight (KG) →
Result →
75
63
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | LANDER Sebastian | 70 |
2 | SØRENSEN Nicki | 71 |
3 | STEENSEN André | 65 |
4 | VALGREN Michael | 71 |
5 | SØRENSEN Chris Anker | 64 |
6 | FUGLSANG Jakob | 67 |
7 | MORTENSEN Martin | 70 |
8 | CORT Magnus | 68 |
9 | CHRISTENSEN Mads | 69 |
11 | MØRKØV Michael | 71 |
24 | LUND Anders | 65 |
25 | AAEN JØRGENSEN Jonas | 63 |
26 | VANDBORG Brian Bach | 75 |
27 | KLOSTERGAARD Kasper | 69 |
28 | VINTHER Troels Rønning | 68 |
30 | MOBERG JØRGENSEN Christian | 73 |
31 | JUUL-JENSEN Christopher | 73 |
36 | MADSEN Martin Toft | 67 |