Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 90
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Kragh Andersen
1
73 kgPedersen
2
76 kgPedersen
3
71 kgAsgreen
6
75 kgPedersen
7
74 kgJohansen
9
77 kgLarsen
10
74 kgCharmig
12
66 kgWallin
13
78 kgKron
14
63 kgHellemose
15
65 kgGudnitz
19
69 kgWürtz Schmidt
20
70 kgKamp
21
74 kgCort
22
68 kgValgren
23
71 kgBjerg
26
78 kgSander Hansen
27
68 kgWang
28
70 kgStokbro
29
70 kgBregnhøj
33
63 kgSchandorff Iwersen
36
62 kg
1
73 kgPedersen
2
76 kgPedersen
3
71 kgAsgreen
6
75 kgPedersen
7
74 kgJohansen
9
77 kgLarsen
10
74 kgCharmig
12
66 kgWallin
13
78 kgKron
14
63 kgHellemose
15
65 kgGudnitz
19
69 kgWürtz Schmidt
20
70 kgKamp
21
74 kgCort
22
68 kgValgren
23
71 kgBjerg
26
78 kgSander Hansen
27
68 kgWang
28
70 kgStokbro
29
70 kgBregnhøj
33
63 kgSchandorff Iwersen
36
62 kg
Weight (KG) →
Result →
78
62
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | KRAGH ANDERSEN Søren | 73 |
2 | PEDERSEN Mads | 76 |
3 | PEDERSEN Casper | 71 |
6 | ASGREEN Kasper | 75 |
7 | PEDERSEN Rasmus Søjberg | 74 |
9 | JOHANSEN Julius | 77 |
10 | LARSEN Niklas | 74 |
12 | CHARMIG Anthon | 66 |
13 | WALLIN Rasmus Bøgh | 78 |
14 | KRON Andreas | 63 |
15 | HELLEMOSE Asbjørn | 65 |
19 | GUDNITZ Joshua | 69 |
20 | WÜRTZ SCHMIDT Mads | 70 |
21 | KAMP Alexander | 74 |
22 | CORT Magnus | 68 |
23 | VALGREN Michael | 71 |
26 | BJERG Mikkel | 78 |
27 | SANDER HANSEN Marcus | 68 |
28 | WANG Gustav | 70 |
29 | STOKBRO Andreas | 70 |
33 | BREGNHØJ Mathias | 63 |
36 | SCHANDORFF IWERSEN Emil | 62 |