Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -13 * weight + 1656
This means that on average for every extra kilogram weight a rider loses -13 positions in the result.
Hinault
2
62 kgMerckx
4
74 kgVan Looy
6
75 kgDierickx
10
74 kgSercu
990
76 kgVan Impe
990
59 kgBracke
990
79 kgLadrón
990
74 kgThaler
990
60 kgTamames
990
66 kgPoulidor
990
71 kgZoetemelk
990
68 kgMartin
990
62 kgOvion
990
64 kgBourreau
990
63 kgKelly
990
77 kgBittinger
990
69 kg
2
62 kgMerckx
4
74 kgVan Looy
6
75 kgDierickx
10
74 kgSercu
990
76 kgVan Impe
990
59 kgBracke
990
79 kgLadrón
990
74 kgThaler
990
60 kgTamames
990
66 kgPoulidor
990
71 kgZoetemelk
990
68 kgMartin
990
62 kgOvion
990
64 kgBourreau
990
63 kgKelly
990
77 kgBittinger
990
69 kg
Weight (KG) →
Result →
79
59
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | HINAULT Bernard | 62 |
4 | MERCKX Eddy | 74 |
6 | VAN LOOY Frans | 75 |
10 | DIERICKX André | 74 |
990 | SERCU Patrick | 76 |
990 | VAN IMPE Lucien | 59 |
990 | BRACKE Ferdinand | 79 |
990 | LADRÓN Rafael | 74 |
990 | THALER Klaus-Peter | 60 |
990 | TAMAMES Agustín | 66 |
990 | POULIDOR Raymond | 71 |
990 | ZOETEMELK Joop | 68 |
990 | MARTIN Raymond | 62 |
990 | OVION Régis | 64 |
990 | BOURREAU Bernard | 63 |
990 | KELLY Sean | 77 |
990 | BITTINGER René | 69 |