Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 20.4 * weight - 765
This means that on average for every extra kilogram weight a rider loses 20.4 positions in the result.
Hinault
1
62 kgMerckx
2
74 kgVan Impe
3
59 kgZoetemelk
5
68 kgMartin
8
62 kgVan Looy
10
75 kgSercu
990
76 kgBracke
990
79 kgLadrón
990
74 kgThaler
990
60 kgTamames
990
66 kgPoulidor
990
71 kgOvion
990
64 kgBourreau
990
63 kgDierickx
990
74 kgKelly
990
77 kgBittinger
990
69 kg
1
62 kgMerckx
2
74 kgVan Impe
3
59 kgZoetemelk
5
68 kgMartin
8
62 kgVan Looy
10
75 kgSercu
990
76 kgBracke
990
79 kgLadrón
990
74 kgThaler
990
60 kgTamames
990
66 kgPoulidor
990
71 kgOvion
990
64 kgBourreau
990
63 kgDierickx
990
74 kgKelly
990
77 kgBittinger
990
69 kg
Weight (KG) →
Result →
79
59
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | HINAULT Bernard | 62 |
2 | MERCKX Eddy | 74 |
3 | VAN IMPE Lucien | 59 |
5 | ZOETEMELK Joop | 68 |
8 | MARTIN Raymond | 62 |
10 | VAN LOOY Frans | 75 |
990 | SERCU Patrick | 76 |
990 | BRACKE Ferdinand | 79 |
990 | LADRÓN Rafael | 74 |
990 | THALER Klaus-Peter | 60 |
990 | TAMAMES Agustín | 66 |
990 | POULIDOR Raymond | 71 |
990 | OVION Régis | 64 |
990 | BOURREAU Bernard | 63 |
990 | DIERICKX André | 74 |
990 | KELLY Sean | 77 |
990 | BITTINGER René | 69 |