Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -13.9 * weight + 1609
This means that on average for every extra kilogram weight a rider loses -13.9 positions in the result.
Sercu
1
76 kgKelly
2
77 kgVan Looy
3
75 kgHinault
17
62 kgMerckx
45
74 kgVan Impe
67
59 kgBracke
990
79 kgLadrón
990
74 kgTamames
990
66 kgThaler
990
60 kgZoetemelk
990
68 kgPoulidor
990
71 kgMartin
990
62 kgOvion
990
64 kgBourreau
990
63 kgDierickx
990
74 kgBittinger
990
69 kg
1
76 kgKelly
2
77 kgVan Looy
3
75 kgHinault
17
62 kgMerckx
45
74 kgVan Impe
67
59 kgBracke
990
79 kgLadrón
990
74 kgTamames
990
66 kgThaler
990
60 kgZoetemelk
990
68 kgPoulidor
990
71 kgMartin
990
62 kgOvion
990
64 kgBourreau
990
63 kgDierickx
990
74 kgBittinger
990
69 kg
Weight (KG) →
Result →
79
59
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | SERCU Patrick | 76 |
2 | KELLY Sean | 77 |
3 | VAN LOOY Frans | 75 |
17 | HINAULT Bernard | 62 |
45 | MERCKX Eddy | 74 |
67 | VAN IMPE Lucien | 59 |
990 | BRACKE Ferdinand | 79 |
990 | LADRÓN Rafael | 74 |
990 | TAMAMES Agustín | 66 |
990 | THALER Klaus-Peter | 60 |
990 | ZOETEMELK Joop | 68 |
990 | POULIDOR Raymond | 71 |
990 | MARTIN Raymond | 62 |
990 | OVION Régis | 64 |
990 | BOURREAU Bernard | 63 |
990 | DIERICKX André | 74 |
990 | BITTINGER René | 69 |