Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 6.6 * weight + 74
This means that on average for every extra kilogram weight a rider loses 6.6 positions in the result.
Sercu
1
76 kgKelly
2
77 kgOvion
6
64 kgVan Looy
8
75 kgThaler
9
60 kgHinault
22
62 kgMerckx
25
74 kgVan Impe
39
59 kgBracke
990
79 kgLadrón
990
74 kgTamames
990
66 kgPoulidor
990
71 kgMartin
990
62 kgZoetemelk
990
68 kgBourreau
990
63 kgDierickx
990
74 kgBittinger
990
69 kg
1
76 kgKelly
2
77 kgOvion
6
64 kgVan Looy
8
75 kgThaler
9
60 kgHinault
22
62 kgMerckx
25
74 kgVan Impe
39
59 kgBracke
990
79 kgLadrón
990
74 kgTamames
990
66 kgPoulidor
990
71 kgMartin
990
62 kgZoetemelk
990
68 kgBourreau
990
63 kgDierickx
990
74 kgBittinger
990
69 kg
Weight (KG) →
Result →
79
59
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | SERCU Patrick | 76 |
2 | KELLY Sean | 77 |
6 | OVION Régis | 64 |
8 | VAN LOOY Frans | 75 |
9 | THALER Klaus-Peter | 60 |
22 | HINAULT Bernard | 62 |
25 | MERCKX Eddy | 74 |
39 | VAN IMPE Lucien | 59 |
990 | BRACKE Ferdinand | 79 |
990 | LADRÓN Rafael | 74 |
990 | TAMAMES Agustín | 66 |
990 | POULIDOR Raymond | 71 |
990 | MARTIN Raymond | 62 |
990 | ZOETEMELK Joop | 68 |
990 | BOURREAU Bernard | 63 |
990 | DIERICKX André | 74 |
990 | BITTINGER René | 69 |