Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 6.5 * weight + 289
This means that on average for every extra kilogram weight a rider loses 6.5 positions in the result.
Zoetemelk
1
68 kgHinault
2
62 kgVan Impe
4
59 kgBaronchelli
5
72 kgvan Vliet
7
65 kgThaler
990
60 kgBernaudeau
990
64 kgDidier
990
67 kgVandi
990
64 kgSchepers
990
60 kgNilsson
990
63 kgMartin
990
62 kgKuiper
990
69 kgDuclos-Lassalle
990
73 kgOvion
990
64 kgBourreau
990
63 kgBittinger
990
69 kgDemeyer
990
85 kg
1
68 kgHinault
2
62 kgVan Impe
4
59 kgBaronchelli
5
72 kgvan Vliet
7
65 kgThaler
990
60 kgBernaudeau
990
64 kgDidier
990
67 kgVandi
990
64 kgSchepers
990
60 kgNilsson
990
63 kgMartin
990
62 kgKuiper
990
69 kgDuclos-Lassalle
990
73 kgOvion
990
64 kgBourreau
990
63 kgBittinger
990
69 kgDemeyer
990
85 kg
Weight (KG) →
Result →
85
59
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | ZOETEMELK Joop | 68 |
2 | HINAULT Bernard | 62 |
4 | VAN IMPE Lucien | 59 |
5 | BARONCHELLI Gianbattista | 72 |
7 | VAN VLIET Leo | 65 |
990 | THALER Klaus-Peter | 60 |
990 | BERNAUDEAU Jean-René | 64 |
990 | DIDIER Lucien | 67 |
990 | VANDI Alfio | 64 |
990 | SCHEPERS Eddy | 60 |
990 | NILSSON Sven-Åke | 63 |
990 | MARTIN Raymond | 62 |
990 | KUIPER Hennie | 69 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | OVION Régis | 64 |
990 | BOURREAU Bernard | 63 |
990 | BITTINGER René | 69 |
990 | DEMEYER Marc | 85 |