Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 12.3 * weight + 69
This means that on average for every extra kilogram weight a rider loses 12.3 positions in the result.
Thaler
1
60 kgOvion
3
64 kgvan Vliet
990
65 kgVan Impe
990
59 kgHinault
990
62 kgBernaudeau
990
64 kgDidier
990
67 kgBaronchelli
990
72 kgVandi
990
64 kgSchepers
990
60 kgNilsson
990
63 kgZoetemelk
990
68 kgMartin
990
62 kgKuiper
990
69 kgDuclos-Lassalle
990
73 kgBourreau
990
63 kgBittinger
990
69 kgDemeyer
990
85 kg
1
60 kgOvion
3
64 kgvan Vliet
990
65 kgVan Impe
990
59 kgHinault
990
62 kgBernaudeau
990
64 kgDidier
990
67 kgBaronchelli
990
72 kgVandi
990
64 kgSchepers
990
60 kgNilsson
990
63 kgZoetemelk
990
68 kgMartin
990
62 kgKuiper
990
69 kgDuclos-Lassalle
990
73 kgBourreau
990
63 kgBittinger
990
69 kgDemeyer
990
85 kg
Weight (KG) →
Result →
85
59
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | THALER Klaus-Peter | 60 |
3 | OVION Régis | 64 |
990 | VAN VLIET Leo | 65 |
990 | VAN IMPE Lucien | 59 |
990 | HINAULT Bernard | 62 |
990 | BERNAUDEAU Jean-René | 64 |
990 | DIDIER Lucien | 67 |
990 | BARONCHELLI Gianbattista | 72 |
990 | VANDI Alfio | 64 |
990 | SCHEPERS Eddy | 60 |
990 | NILSSON Sven-Åke | 63 |
990 | ZOETEMELK Joop | 68 |
990 | MARTIN Raymond | 62 |
990 | KUIPER Hennie | 69 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | BOURREAU Bernard | 63 |
990 | BITTINGER René | 69 |
990 | DEMEYER Marc | 85 |