Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 14.5 * weight - 146
This means that on average for every extra kilogram weight a rider loses 14.5 positions in the result.
Hinault 
1
62 kgVan Impe
2
59 kgZoetemelk
3
68 kgvan Vliet
990
65 kgThaler
990
60 kgBernaudeau
990
64 kgDidier
990
67 kgBaronchelli
990
72 kgVandi
990
64 kgSchepers
990
60 kgMartin
990
62 kgNilsson
990
63 kgDuclos-Lassalle
990
73 kgBourreau
990
63 kgKuiper
990
69 kgDemeyer
990
85 kgBittinger
990
69 kg
1
62 kgVan Impe
2
59 kgZoetemelk
3
68 kgvan Vliet
990
65 kgThaler
990
60 kgBernaudeau
990
64 kgDidier
990
67 kgBaronchelli
990
72 kgVandi
990
64 kgSchepers
990
60 kgMartin
990
62 kgNilsson
990
63 kgDuclos-Lassalle
990
73 kgBourreau
990
63 kgKuiper
990
69 kgDemeyer
990
85 kgBittinger
990
69 kg
Weight (KG) → 
Result → 
85
59
1
990
| # | Rider | Weight (KG) | 
|---|---|---|
| 1 | HINAULT Bernard | 62 | 
| 2 | VAN IMPE Lucien | 59 | 
| 3 | ZOETEMELK Joop | 68 | 
| 990 | VAN VLIET Leo | 65 | 
| 990 | THALER Klaus-Peter | 60 | 
| 990 | BERNAUDEAU Jean-René | 64 | 
| 990 | DIDIER Lucien | 67 | 
| 990 | BARONCHELLI Gianbattista | 72 | 
| 990 | VANDI Alfio | 64 | 
| 990 | SCHEPERS Eddy | 60 | 
| 990 | MARTIN Raymond | 62 | 
| 990 | NILSSON Sven-Åke | 63 | 
| 990 | DUCLOS-LASSALLE Gilbert | 73 | 
| 990 | BOURREAU Bernard | 63 | 
| 990 | KUIPER Hennie | 69 | 
| 990 | DEMEYER Marc | 85 | 
| 990 | BITTINGER René | 69 |