Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -28.7 * weight + 2832
This means that on average for every extra kilogram weight a rider loses -28.7 positions in the result.
Demeyer
1
85 kgvan Vliet
990
65 kgThaler
990
60 kgVan Impe
990
59 kgHinault
990
62 kgBernaudeau
990
64 kgDidier
990
67 kgVandi
990
64 kgBaronchelli
990
72 kgSchepers
990
60 kgNilsson
990
63 kgZoetemelk
990
68 kgMartin
990
62 kgKuiper
990
69 kgBourreau
990
63 kgDuclos-Lassalle
990
73 kgBittinger
990
69 kg
1
85 kgvan Vliet
990
65 kgThaler
990
60 kgVan Impe
990
59 kgHinault
990
62 kgBernaudeau
990
64 kgDidier
990
67 kgVandi
990
64 kgBaronchelli
990
72 kgSchepers
990
60 kgNilsson
990
63 kgZoetemelk
990
68 kgMartin
990
62 kgKuiper
990
69 kgBourreau
990
63 kgDuclos-Lassalle
990
73 kgBittinger
990
69 kg
Weight (KG) →
Result →
85
59
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | DEMEYER Marc | 85 |
990 | VAN VLIET Leo | 65 |
990 | THALER Klaus-Peter | 60 |
990 | VAN IMPE Lucien | 59 |
990 | HINAULT Bernard | 62 |
990 | BERNAUDEAU Jean-René | 64 |
990 | DIDIER Lucien | 67 |
990 | VANDI Alfio | 64 |
990 | BARONCHELLI Gianbattista | 72 |
990 | SCHEPERS Eddy | 60 |
990 | NILSSON Sven-Åke | 63 |
990 | ZOETEMELK Joop | 68 |
990 | MARTIN Raymond | 62 |
990 | KUIPER Hennie | 69 |
990 | BOURREAU Bernard | 63 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | BITTINGER René | 69 |