Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 14.4 * weight - 17
This means that on average for every extra kilogram weight a rider loses 14.4 positions in the result.
Hinault
1
62 kgThaler
990
60 kgvan Vliet
990
65 kgDidier
990
67 kgBernaudeau
990
64 kgBaronchelli
990
72 kgVandi
990
64 kgSchepers
990
60 kgNilsson
990
63 kgMartin
990
62 kgZoetemelk
990
68 kgKuiper
990
69 kgBourreau
990
63 kgDuclos-Lassalle
990
73 kgBittinger
990
69 kg
1
62 kgThaler
990
60 kgvan Vliet
990
65 kgDidier
990
67 kgBernaudeau
990
64 kgBaronchelli
990
72 kgVandi
990
64 kgSchepers
990
60 kgNilsson
990
63 kgMartin
990
62 kgZoetemelk
990
68 kgKuiper
990
69 kgBourreau
990
63 kgDuclos-Lassalle
990
73 kgBittinger
990
69 kg
Weight (KG) →
Result →
73
60
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | HINAULT Bernard | 62 |
990 | THALER Klaus-Peter | 60 |
990 | VAN VLIET Leo | 65 |
990 | DIDIER Lucien | 67 |
990 | BERNAUDEAU Jean-René | 64 |
990 | BARONCHELLI Gianbattista | 72 |
990 | VANDI Alfio | 64 |
990 | SCHEPERS Eddy | 60 |
990 | NILSSON Sven-Åke | 63 |
990 | MARTIN Raymond | 62 |
990 | ZOETEMELK Joop | 68 |
990 | KUIPER Hennie | 69 |
990 | BOURREAU Bernard | 63 |
990 | DUCLOS-LASSALLE Gilbert | 73 |
990 | BITTINGER René | 69 |