Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Dufaux
1
60 kgKasputis
3
83 kgRous
4
70 kgHervé
5
62 kgVirenque
6
65 kgJonker
8
69 kgArroyo
12
59 kgde Vries
14
75 kgStephens
19
65 kgBoardman
20
70 kgKelly
23
77 kgZamana
25
74 kgHodge
27
74 kgGoubert
28
62 kgThijs
31
69 kgSimon
32
70 kgVan Lancker
43
67 kgMagnien
44
68 kgDurand
48
76 kgVan de Wouwer
51
66 kgChanteur
53
62 kg
1
60 kgKasputis
3
83 kgRous
4
70 kgHervé
5
62 kgVirenque
6
65 kgJonker
8
69 kgArroyo
12
59 kgde Vries
14
75 kgStephens
19
65 kgBoardman
20
70 kgKelly
23
77 kgZamana
25
74 kgHodge
27
74 kgGoubert
28
62 kgThijs
31
69 kgSimon
32
70 kgVan Lancker
43
67 kgMagnien
44
68 kgDurand
48
76 kgVan de Wouwer
51
66 kgChanteur
53
62 kg
Weight (KG) →
Result →
83
59
1
53
# | Rider | Weight (KG) |
---|---|---|
1 | DUFAUX Laurent | 60 |
3 | KASPUTIS Artūras | 83 |
4 | ROUS Didier | 70 |
5 | HERVÉ Pascal | 62 |
6 | VIRENQUE Richard | 65 |
8 | JONKER Patrick | 69 |
12 | ARROYO Miguel | 59 |
14 | DE VRIES Gerrit | 75 |
19 | STEPHENS Neil | 65 |
20 | BOARDMAN Chris | 70 |
23 | KELLY Sean | 77 |
25 | ZAMANA Cezary | 74 |
27 | HODGE Stephen | 74 |
28 | GOUBERT Stéphane | 62 |
31 | THIJS Erwin | 69 |
32 | SIMON François | 70 |
43 | VAN LANCKER Kurt | 67 |
44 | MAGNIEN Emmanuel | 68 |
48 | DURAND Jacky | 76 |
51 | VAN DE WOUWER Kurt | 66 |
53 | CHANTEUR Pascal | 62 |