Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 34.9 * weight - 1692
This means that on average for every extra kilogram weight a rider loses 34.9 positions in the result.
Hervé
1
62 kgVirenque
3
65 kgArroyo
5
59 kgDufaux
6
60 kgRous
8
70 kgJonker
10
69 kgKasputis
990
83 kgChanteur
990
62 kgHodge
990
74 kgGoubert
990
62 kgZamana
990
74 kgStephens
990
65 kgde Vries
990
75 kgMagnien
990
68 kgDurand
990
76 kgSimon
990
70 kgVan de Wouwer
990
66 kgKelly
990
77 kgVan Lancker
990
67 kgThijs
990
69 kgBoardman
990
70 kg
1
62 kgVirenque
3
65 kgArroyo
5
59 kgDufaux
6
60 kgRous
8
70 kgJonker
10
69 kgKasputis
990
83 kgChanteur
990
62 kgHodge
990
74 kgGoubert
990
62 kgZamana
990
74 kgStephens
990
65 kgde Vries
990
75 kgMagnien
990
68 kgDurand
990
76 kgSimon
990
70 kgVan de Wouwer
990
66 kgKelly
990
77 kgVan Lancker
990
67 kgThijs
990
69 kgBoardman
990
70 kg
Weight (KG) →
Result →
83
59
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | HERVÉ Pascal | 62 |
3 | VIRENQUE Richard | 65 |
5 | ARROYO Miguel | 59 |
6 | DUFAUX Laurent | 60 |
8 | ROUS Didier | 70 |
10 | JONKER Patrick | 69 |
990 | KASPUTIS Artūras | 83 |
990 | CHANTEUR Pascal | 62 |
990 | HODGE Stephen | 74 |
990 | GOUBERT Stéphane | 62 |
990 | ZAMANA Cezary | 74 |
990 | STEPHENS Neil | 65 |
990 | DE VRIES Gerrit | 75 |
990 | MAGNIEN Emmanuel | 68 |
990 | DURAND Jacky | 76 |
990 | SIMON François | 70 |
990 | VAN DE WOUWER Kurt | 66 |
990 | KELLY Sean | 77 |
990 | VAN LANCKER Kurt | 67 |
990 | THIJS Erwin | 69 |
990 | BOARDMAN Chris | 70 |