Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 4.2 * weight + 423
This means that on average for every extra kilogram weight a rider loses 4.2 positions in the result.
Virenque
2
65 kgKasputis
4
83 kgDufaux
5
60 kgJonker
6
69 kgRous
9
70 kgHervé
10
62 kgChanteur
990
62 kgHodge
990
74 kgGoubert
990
62 kgZamana
990
74 kgStephens
990
65 kgde Vries
990
75 kgSimon
990
70 kgMagnien
990
68 kgDurand
990
76 kgVan de Wouwer
990
66 kgArroyo
990
59 kgKelly
990
77 kgThijs
990
69 kgVan Lancker
990
67 kgBoardman
990
70 kg
2
65 kgKasputis
4
83 kgDufaux
5
60 kgJonker
6
69 kgRous
9
70 kgHervé
10
62 kgChanteur
990
62 kgHodge
990
74 kgGoubert
990
62 kgZamana
990
74 kgStephens
990
65 kgde Vries
990
75 kgSimon
990
70 kgMagnien
990
68 kgDurand
990
76 kgVan de Wouwer
990
66 kgArroyo
990
59 kgKelly
990
77 kgThijs
990
69 kgVan Lancker
990
67 kgBoardman
990
70 kg
Weight (KG) →
Result →
83
59
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | VIRENQUE Richard | 65 |
4 | KASPUTIS Artūras | 83 |
5 | DUFAUX Laurent | 60 |
6 | JONKER Patrick | 69 |
9 | ROUS Didier | 70 |
10 | HERVÉ Pascal | 62 |
990 | CHANTEUR Pascal | 62 |
990 | HODGE Stephen | 74 |
990 | GOUBERT Stéphane | 62 |
990 | ZAMANA Cezary | 74 |
990 | STEPHENS Neil | 65 |
990 | DE VRIES Gerrit | 75 |
990 | SIMON François | 70 |
990 | MAGNIEN Emmanuel | 68 |
990 | DURAND Jacky | 76 |
990 | VAN DE WOUWER Kurt | 66 |
990 | ARROYO Miguel | 59 |
990 | KELLY Sean | 77 |
990 | THIJS Erwin | 69 |
990 | VAN LANCKER Kurt | 67 |
990 | BOARDMAN Chris | 70 |