Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -4.1 * weight + 899
This means that on average for every extra kilogram weight a rider loses -4.1 positions in the result.
Boardman
1
70 kgDufaux
3
60 kgHervé
4
62 kgHodge
5
74 kgMagnien
6
68 kgZamana
7
74 kgDurand
8
76 kgJonker
9
69 kgChanteur
990
62 kgKasputis
990
83 kgGoubert
990
62 kgVirenque
990
65 kgStephens
990
65 kgde Vries
990
75 kgSimon
990
70 kgVan de Wouwer
990
66 kgArroyo
990
59 kgKelly
990
77 kgVan Lancker
990
67 kgThijs
990
69 kgRous
990
70 kg
1
70 kgDufaux
3
60 kgHervé
4
62 kgHodge
5
74 kgMagnien
6
68 kgZamana
7
74 kgDurand
8
76 kgJonker
9
69 kgChanteur
990
62 kgKasputis
990
83 kgGoubert
990
62 kgVirenque
990
65 kgStephens
990
65 kgde Vries
990
75 kgSimon
990
70 kgVan de Wouwer
990
66 kgArroyo
990
59 kgKelly
990
77 kgVan Lancker
990
67 kgThijs
990
69 kgRous
990
70 kg
Weight (KG) →
Result →
83
59
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | BOARDMAN Chris | 70 |
3 | DUFAUX Laurent | 60 |
4 | HERVÉ Pascal | 62 |
5 | HODGE Stephen | 74 |
6 | MAGNIEN Emmanuel | 68 |
7 | ZAMANA Cezary | 74 |
8 | DURAND Jacky | 76 |
9 | JONKER Patrick | 69 |
990 | CHANTEUR Pascal | 62 |
990 | KASPUTIS Artūras | 83 |
990 | GOUBERT Stéphane | 62 |
990 | VIRENQUE Richard | 65 |
990 | STEPHENS Neil | 65 |
990 | DE VRIES Gerrit | 75 |
990 | SIMON François | 70 |
990 | VAN DE WOUWER Kurt | 66 |
990 | ARROYO Miguel | 59 |
990 | KELLY Sean | 77 |
990 | VAN LANCKER Kurt | 67 |
990 | THIJS Erwin | 69 |
990 | ROUS Didier | 70 |