Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 64
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Simon
1
70 kgOzers
2
73 kgInduráin
3
76 kgRiis
5
71 kgHundertmarck
7
72 kgChanteur
8
62 kgBrochard
9
68 kgMagnien
10
68 kgvan Heeswijk
12
73 kgGualdi
13
68 kgMauri
15
68 kgBoardman
17
70 kgBouvard
20
70 kgVirenque
22
65 kgDufaux
23
60 kgMoncassin
24
73 kgHeulot
25
69 kg
1
70 kgOzers
2
73 kgInduráin
3
76 kgRiis
5
71 kgHundertmarck
7
72 kgChanteur
8
62 kgBrochard
9
68 kgMagnien
10
68 kgvan Heeswijk
12
73 kgGualdi
13
68 kgMauri
15
68 kgBoardman
17
70 kgBouvard
20
70 kgVirenque
22
65 kgDufaux
23
60 kgMoncassin
24
73 kgHeulot
25
69 kg
Weight (KG) →
Result →
76
60
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | SIMON François | 70 |
2 | OZERS Kaspars | 73 |
3 | INDURÁIN Miguel | 76 |
5 | RIIS Bjarne | 71 |
7 | HUNDERTMARCK Kai | 72 |
8 | CHANTEUR Pascal | 62 |
9 | BROCHARD Laurent | 68 |
10 | MAGNIEN Emmanuel | 68 |
12 | VAN HEESWIJK Max | 73 |
13 | GUALDI Mirko | 68 |
15 | MAURI Melchor | 68 |
17 | BOARDMAN Chris | 70 |
20 | BOUVARD Gilles | 70 |
22 | VIRENQUE Richard | 65 |
23 | DUFAUX Laurent | 60 |
24 | MONCASSIN Frédéric | 73 |
25 | HEULOT Stéphane | 69 |