Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 57
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Sciandri
1
75 kgVoigt
2
76 kgCapelle
3
73 kgLombardi
4
73 kgDjavanian
5
64 kgBarthe
6
65 kgNazon
7
68 kgVerheyen
8
68 kgVierhouten
10
71 kgSimon
11
70 kgJalabert
12
68 kgMoncassin
14
73 kgMoreau
15
71 kgHinault
16
63 kgVidal
17
71 kgJalabert
18
66 kgOsa
19
65 kgVasseur
20
70 kg
1
75 kgVoigt
2
76 kgCapelle
3
73 kgLombardi
4
73 kgDjavanian
5
64 kgBarthe
6
65 kgNazon
7
68 kgVerheyen
8
68 kgVierhouten
10
71 kgSimon
11
70 kgJalabert
12
68 kgMoncassin
14
73 kgMoreau
15
71 kgHinault
16
63 kgVidal
17
71 kgJalabert
18
66 kgOsa
19
65 kgVasseur
20
70 kg
Weight (KG) →
Result →
76
63
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | SCIANDRI Maximilian | 75 |
2 | VOIGT Jens | 76 |
3 | CAPELLE Christophe | 73 |
4 | LOMBARDI Giovanni | 73 |
5 | DJAVANIAN Viatcheslav | 64 |
6 | BARTHE Stéphane | 65 |
7 | NAZON Damien | 68 |
8 | VERHEYEN Geert | 68 |
10 | VIERHOUTEN Aart | 71 |
11 | SIMON François | 70 |
12 | JALABERT Nicolas | 68 |
14 | MONCASSIN Frédéric | 73 |
15 | MOREAU Christophe | 71 |
16 | HINAULT Sébastien | 63 |
17 | VIDAL José Ángel | 71 |
18 | JALABERT Laurent | 66 |
19 | OSA Unai | 65 |
20 | VASSEUR Cédric | 70 |