Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 71
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Durand
1
76 kgCooke
2
75 kgMcGee
3
72 kgMattan
5
69 kgvan Dijk
6
74 kgKjærgaard
7
74 kgSimon
8
70 kgChavanel
9
73 kgArmstrong
10
72 kgMikhaylov
11
74 kgSivakov
13
72 kgSeigneur
14
71 kgVirenque
15
65 kgGutiérrez
16
78 kgRous
17
70 kgHinault
18
63 kgMillar
19
79 kgSevilla
20
62 kgEkimov
21
69 kgKashechkin
22
70 kgEdaleine
23
62 kgHalgand
24
67 kgLandis
25
68 kg
1
76 kgCooke
2
75 kgMcGee
3
72 kgMattan
5
69 kgvan Dijk
6
74 kgKjærgaard
7
74 kgSimon
8
70 kgChavanel
9
73 kgArmstrong
10
72 kgMikhaylov
11
74 kgSivakov
13
72 kgSeigneur
14
71 kgVirenque
15
65 kgGutiérrez
16
78 kgRous
17
70 kgHinault
18
63 kgMillar
19
79 kgSevilla
20
62 kgEkimov
21
69 kgKashechkin
22
70 kgEdaleine
23
62 kgHalgand
24
67 kgLandis
25
68 kg
Weight (KG) →
Result →
79
62
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | DURAND Jacky | 76 |
2 | COOKE Baden | 75 |
3 | MCGEE Bradley | 72 |
5 | MATTAN Nico | 69 |
6 | VAN DIJK Stefan | 74 |
7 | KJÆRGAARD Steffen | 74 |
8 | SIMON François | 70 |
9 | CHAVANEL Sylvain | 73 |
10 | ARMSTRONG Lance | 72 |
11 | MIKHAYLOV Gennady | 74 |
13 | SIVAKOV Alexei | 72 |
14 | SEIGNEUR Eddy | 71 |
15 | VIRENQUE Richard | 65 |
16 | GUTIÉRREZ José Enrique | 78 |
17 | ROUS Didier | 70 |
18 | HINAULT Sébastien | 63 |
19 | MILLAR David | 79 |
20 | SEVILLA Óscar | 62 |
21 | EKIMOV Viatcheslav | 69 |
22 | KASHECHKIN Andrey | 70 |
23 | EDALEINE Christophe | 62 |
24 | HALGAND Patrice | 67 |
25 | LANDIS Floyd | 68 |