Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Van den Broeck
1
69 kgDuque
2
59 kgRodríguez
3
58 kgFeillu
4
69 kgEvans
5
64 kgVan De Walle
6
74 kgVinokourov
7
68 kgVandousselaere
8
71 kgRoche
9
70 kgBoasson Hagen
10
75 kgHinault
11
63 kgJérôme
12
65 kgDumoulin
13
57 kgDegenkolb
14
82 kgTjallingii
15
81 kgSimon
16
65 kgNiermann
17
64 kg
1
69 kgDuque
2
59 kgRodríguez
3
58 kgFeillu
4
69 kgEvans
5
64 kgVan De Walle
6
74 kgVinokourov
7
68 kgVandousselaere
8
71 kgRoche
9
70 kgBoasson Hagen
10
75 kgHinault
11
63 kgJérôme
12
65 kgDumoulin
13
57 kgDegenkolb
14
82 kgTjallingii
15
81 kgSimon
16
65 kgNiermann
17
64 kg
Weight (KG) →
Result →
82
57
1
17
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DEN BROECK Jurgen | 69 |
2 | DUQUE Leonardo Fabio | 59 |
3 | RODRÍGUEZ Joaquim | 58 |
4 | FEILLU Brice | 69 |
5 | EVANS Cadel | 64 |
6 | VAN DE WALLE Jurgen | 74 |
7 | VINOKOUROV Alexandre | 68 |
8 | VANDOUSSELAERE Sven | 71 |
9 | ROCHE Nicolas | 70 |
10 | BOASSON HAGEN Edvald | 75 |
11 | HINAULT Sébastien | 63 |
12 | JÉRÔME Vincent | 65 |
13 | DUMOULIN Samuel | 57 |
14 | DEGENKOLB John | 82 |
15 | TJALLINGII Maarten | 81 |
16 | SIMON Julien | 65 |
17 | NIERMANN Grischa | 64 |