Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Meersman
1
63 kgVeilleux
2
75 kgViviani
3
67 kgGallopin
4
69 kgSlagter
5
57 kgPorte
6
62 kgJanse van Rensburg
7
74 kgFroome
8
68 kgGeslin
9
68 kgMendes
10
64 kgMadrazo
11
61 kgFonseca
12
56 kgDamuseau
13
64 kgFuglsang
14
67 kgTankink
15
71 kgGérard
16
70 kgBarguil
17
61 kgValverde
18
61 kgFlecha
19
72 kgKönig
20
62 kgSulzberger
21
65 kgGarcía
22
68 kg
1
63 kgVeilleux
2
75 kgViviani
3
67 kgGallopin
4
69 kgSlagter
5
57 kgPorte
6
62 kgJanse van Rensburg
7
74 kgFroome
8
68 kgGeslin
9
68 kgMendes
10
64 kgMadrazo
11
61 kgFonseca
12
56 kgDamuseau
13
64 kgFuglsang
14
67 kgTankink
15
71 kgGérard
16
70 kgBarguil
17
61 kgValverde
18
61 kgFlecha
19
72 kgKönig
20
62 kgSulzberger
21
65 kgGarcía
22
68 kg
Weight (KG) →
Result →
75
56
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | MEERSMAN Gianni | 63 |
2 | VEILLEUX David | 75 |
3 | VIVIANI Elia | 67 |
4 | GALLOPIN Tony | 69 |
5 | SLAGTER Tom-Jelte | 57 |
6 | PORTE Richie | 62 |
7 | JANSE VAN RENSBURG Reinardt | 74 |
8 | FROOME Chris | 68 |
9 | GESLIN Anthony | 68 |
10 | MENDES José | 64 |
11 | MADRAZO Ángel | 61 |
12 | FONSECA Armindo | 56 |
13 | DAMUSEAU Thomas | 64 |
14 | FUGLSANG Jakob | 67 |
15 | TANKINK Bram | 71 |
16 | GÉRARD Arnaud | 70 |
17 | BARGUIL Warren | 61 |
18 | VALVERDE Alejandro | 61 |
19 | FLECHA Juan Antonio | 72 |
20 | KÖNIG Leopold | 62 |
21 | SULZBERGER Wesley | 65 |
22 | GARCÍA Ricardo | 68 |