Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 16
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Froome
1
68 kgContador
2
61 kgKelderman
3
65 kgTalansky
4
63 kgJungels
5
70 kgVan den Broeck
6
69 kgNibali
7
65 kgBrändle
8
80 kgBoom
9
75 kgAntón
10
64 kgKiryienka
11
69 kgYates
12
58 kgDamuseau
13
64 kgReichenbach
14
64 kgvan Garderen
15
72 kgNavarro
16
60 kgDe Marchi
17
65 kg
1
68 kgContador
2
61 kgKelderman
3
65 kgTalansky
4
63 kgJungels
5
70 kgVan den Broeck
6
69 kgNibali
7
65 kgBrändle
8
80 kgBoom
9
75 kgAntón
10
64 kgKiryienka
11
69 kgYates
12
58 kgDamuseau
13
64 kgReichenbach
14
64 kgvan Garderen
15
72 kgNavarro
16
60 kgDe Marchi
17
65 kg
Weight (KG) →
Result →
80
58
1
17
# | Rider | Weight (KG) |
---|---|---|
1 | FROOME Chris | 68 |
2 | CONTADOR Alberto | 61 |
3 | KELDERMAN Wilco | 65 |
4 | TALANSKY Andrew | 63 |
5 | JUNGELS Bob | 70 |
6 | VAN DEN BROECK Jurgen | 69 |
7 | NIBALI Vincenzo | 65 |
8 | BRÄNDLE Matthias | 80 |
9 | BOOM Lars | 75 |
10 | ANTÓN Igor | 64 |
11 | KIRYIENKA Vasil | 69 |
12 | YATES Adam | 58 |
13 | DAMUSEAU Thomas | 64 |
14 | REICHENBACH Sébastien | 64 |
15 | VAN GARDEREN Tejay | 72 |
16 | NAVARRO Daniel | 60 |
17 | DE MARCHI Alessandro | 65 |