Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Modolo
1
67 kgBouhanni
2
65 kgBoasson Hagen
3
75 kgDumoulin
4
57 kgKennaugh
5
66 kgBenoot
6
72 kgGerrans
7
62 kgTsatevich
8
64 kgvan Genechten
9
67 kgMcCarthy
10
63 kgKeukeleire
11
69 kgNavardauskas
12
79 kgValverde
13
61 kgMartinez
14
69 kgGautier
15
65 kgMezgec
16
72 kg
1
67 kgBouhanni
2
65 kgBoasson Hagen
3
75 kgDumoulin
4
57 kgKennaugh
5
66 kgBenoot
6
72 kgGerrans
7
62 kgTsatevich
8
64 kgvan Genechten
9
67 kgMcCarthy
10
63 kgKeukeleire
11
69 kgNavardauskas
12
79 kgValverde
13
61 kgMartinez
14
69 kgGautier
15
65 kgMezgec
16
72 kg
Weight (KG) →
Result →
79
57
1
16
# | Rider | Weight (KG) |
---|---|---|
1 | MODOLO Sacha | 67 |
2 | BOUHANNI Nacer | 65 |
3 | BOASSON HAGEN Edvald | 75 |
4 | DUMOULIN Samuel | 57 |
5 | KENNAUGH Peter | 66 |
6 | BENOOT Tiesj | 72 |
7 | GERRANS Simon | 62 |
8 | TSATEVICH Alexey | 64 |
9 | VAN GENECHTEN Jonas | 67 |
10 | MCCARTHY Jay | 63 |
11 | KEUKELEIRE Jens | 69 |
12 | NAVARDAUSKAS Ramūnas | 79 |
13 | VALVERDE Alejandro | 61 |
14 | MARTINEZ Yannick | 69 |
15 | GAUTIER Cyril | 65 |
16 | MEZGEC Luka | 72 |