Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Bouhanni
1
65 kgBoasson Hagen
2
75 kgDumoulin
3
57 kgvan Genechten
4
67 kgTsatevich
5
64 kgBenoot
6
72 kgMezgec
7
72 kgKennaugh
8
66 kgGerrans
9
62 kgAlaphilippe
10
62 kgMcCarthy
11
63 kgKeukeleire
12
69 kgValverde
13
61 kgNavardauskas
14
79 kgReza
15
71 kgMartinez
16
69 kgGautier
17
65 kgHaas
18
71 kg
1
65 kgBoasson Hagen
2
75 kgDumoulin
3
57 kgvan Genechten
4
67 kgTsatevich
5
64 kgBenoot
6
72 kgMezgec
7
72 kgKennaugh
8
66 kgGerrans
9
62 kgAlaphilippe
10
62 kgMcCarthy
11
63 kgKeukeleire
12
69 kgValverde
13
61 kgNavardauskas
14
79 kgReza
15
71 kgMartinez
16
69 kgGautier
17
65 kgHaas
18
71 kg
Weight (KG) →
Result →
79
57
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | BOUHANNI Nacer | 65 |
2 | BOASSON HAGEN Edvald | 75 |
3 | DUMOULIN Samuel | 57 |
4 | VAN GENECHTEN Jonas | 67 |
5 | TSATEVICH Alexey | 64 |
6 | BENOOT Tiesj | 72 |
7 | MEZGEC Luka | 72 |
8 | KENNAUGH Peter | 66 |
9 | GERRANS Simon | 62 |
10 | ALAPHILIPPE Julian | 62 |
11 | MCCARTHY Jay | 63 |
12 | KEUKELEIRE Jens | 69 |
13 | VALVERDE Alejandro | 61 |
14 | NAVARDAUSKAS Ramūnas | 79 |
15 | REZA Kévin | 71 |
16 | MARTINEZ Yannick | 69 |
17 | GAUTIER Cyril | 65 |
18 | HAAS Nathan | 71 |