Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Colbrelli
1
74 kgDe Gendt
2
73 kgDémare
3
76 kgDomont
4
65 kgKristoff
5
78 kgUlissi
6
63 kgSwift
7
69 kgBouhanni
8
65 kgLatour
9
66 kgBuchmann
10
59 kgBauhaus
11
75 kgBoasson Hagen
12
75 kgSimon
13
65 kgValverde
14
61 kgAckermann
15
78 kgBettiol
16
69 kgValgren
17
71 kgCoquard
18
59 kg
1
74 kgDe Gendt
2
73 kgDémare
3
76 kgDomont
4
65 kgKristoff
5
78 kgUlissi
6
63 kgSwift
7
69 kgBouhanni
8
65 kgLatour
9
66 kgBuchmann
10
59 kgBauhaus
11
75 kgBoasson Hagen
12
75 kgSimon
13
65 kgValverde
14
61 kgAckermann
15
78 kgBettiol
16
69 kgValgren
17
71 kgCoquard
18
59 kg
Weight (KG) →
Result →
78
59
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | COLBRELLI Sonny | 74 |
2 | DE GENDT Thomas | 73 |
3 | DÉMARE Arnaud | 76 |
4 | DOMONT Axel | 65 |
5 | KRISTOFF Alexander | 78 |
6 | ULISSI Diego | 63 |
7 | SWIFT Ben | 69 |
8 | BOUHANNI Nacer | 65 |
9 | LATOUR Pierre | 66 |
10 | BUCHMANN Emanuel | 59 |
11 | BAUHAUS Phil | 75 |
12 | BOASSON HAGEN Edvald | 75 |
13 | SIMON Julien | 65 |
14 | VALVERDE Alejandro | 61 |
15 | ACKERMANN Pascal | 78 |
16 | BETTIOL Alberto | 69 |
17 | VALGREN Michael | 71 |
18 | COQUARD Bryan | 59 |