Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 15
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Kwiatkowski
1
68 kgImpey
2
72 kgAlaphilippe
3
62 kgAckermann
4
78 kgBenoot
5
72 kgHerrada
6
70 kgCaruso
7
67 kgvan Emden
8
78 kgMoscon
9
71 kgMeurisse
10
71 kgTeunissen
11
73 kgCampenaerts
12
68 kgRosón
13
62 kgBevin
14
75 kgBrändle
15
80 kgJungels
16
70 kgKeukeleire
17
69 kgCastroviejo
18
62 kgBookwalter
19
70 kg
1
68 kgImpey
2
72 kgAlaphilippe
3
62 kgAckermann
4
78 kgBenoot
5
72 kgHerrada
6
70 kgCaruso
7
67 kgvan Emden
8
78 kgMoscon
9
71 kgMeurisse
10
71 kgTeunissen
11
73 kgCampenaerts
12
68 kgRosón
13
62 kgBevin
14
75 kgBrändle
15
80 kgJungels
16
70 kgKeukeleire
17
69 kgCastroviejo
18
62 kgBookwalter
19
70 kg
Weight (KG) →
Result →
80
62
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | KWIATKOWSKI Michał | 68 |
2 | IMPEY Daryl | 72 |
3 | ALAPHILIPPE Julian | 62 |
4 | ACKERMANN Pascal | 78 |
5 | BENOOT Tiesj | 72 |
6 | HERRADA Jesús | 70 |
7 | CARUSO Damiano | 67 |
8 | VAN EMDEN Jos | 78 |
9 | MOSCON Gianni | 71 |
10 | MEURISSE Xandro | 71 |
11 | TEUNISSEN Mike | 73 |
12 | CAMPENAERTS Victor | 68 |
13 | ROSÓN Jaime | 62 |
14 | BEVIN Patrick | 75 |
15 | BRÄNDLE Matthias | 80 |
16 | JUNGELS Bob | 70 |
17 | KEUKELEIRE Jens | 69 |
18 | CASTROVIEJO Jonathan | 62 |
19 | BOOKWALTER Brent | 70 |