Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Lutsenko
1
74 kgTeuns
2
64 kgMartin
3
55 kgBoasson Hagen
4
75 kgGilbert
5
75 kgFuglsang
6
67 kgvan Aert
7
78 kgPinot
8
63 kgPolitt
9
80 kgWoods
10
62 kgMühlberger
11
64 kgColbrelli
12
74 kgVakoč
13
68 kgKoch
14
75 kgVermote
15
74 kgQuintana
16
58 kgPoels
17
66 kgCosnefroy
18
65 kgYates
19
58 kgDoubey
20
62 kgKwiatkowski
21
68 kgEg
22
60 kg
1
74 kgTeuns
2
64 kgMartin
3
55 kgBoasson Hagen
4
75 kgGilbert
5
75 kgFuglsang
6
67 kgvan Aert
7
78 kgPinot
8
63 kgPolitt
9
80 kgWoods
10
62 kgMühlberger
11
64 kgColbrelli
12
74 kgVakoč
13
68 kgKoch
14
75 kgVermote
15
74 kgQuintana
16
58 kgPoels
17
66 kgCosnefroy
18
65 kgYates
19
58 kgDoubey
20
62 kgKwiatkowski
21
68 kgEg
22
60 kg
Weight (KG) →
Result →
80
55
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | LUTSENKO Alexey | 74 |
2 | TEUNS Dylan | 64 |
3 | MARTIN Guillaume | 55 |
4 | BOASSON HAGEN Edvald | 75 |
5 | GILBERT Philippe | 75 |
6 | FUGLSANG Jakob | 67 |
7 | VAN AERT Wout | 78 |
8 | PINOT Thibaut | 63 |
9 | POLITT Nils | 80 |
10 | WOODS Michael | 62 |
11 | MÜHLBERGER Gregor | 64 |
12 | COLBRELLI Sonny | 74 |
13 | VAKOČ Petr | 68 |
14 | KOCH Jonas | 75 |
15 | VERMOTE Julien | 74 |
16 | QUINTANA Nairo | 58 |
17 | POELS Wout | 66 |
18 | COSNEFROY Benoît | 65 |
19 | YATES Adam | 58 |
20 | DOUBEY Fabien | 62 |
21 | KWIATKOWSKI Michał | 68 |
22 | EG Niklas | 60 |