Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 5
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Lambrecht
1
56 kgPowless
2
67 kgKuss
3
61 kgPolitt
4
80 kgMoscon
5
71 kgGaudu
6
53 kgPower
7
68 kgvan Aert
8
78 kgHofstede
9
73 kgMuñoz
10
63 kgSchultz
11
68 kgEg
12
60 kgStork
13
65 kgPadun
14
67 kgOwen
15
67 kgCavagna
16
78 kgNieuwenhuis
17
71 kgde Bod
18
66 kgCosnefroy
19
65 kgMertz
20
70 kgEenkhoorn
21
72 kgWhelan
22
64 kgvan den Berg
23
78 kg
1
56 kgPowless
2
67 kgKuss
3
61 kgPolitt
4
80 kgMoscon
5
71 kgGaudu
6
53 kgPower
7
68 kgvan Aert
8
78 kgHofstede
9
73 kgMuñoz
10
63 kgSchultz
11
68 kgEg
12
60 kgStork
13
65 kgPadun
14
67 kgOwen
15
67 kgCavagna
16
78 kgNieuwenhuis
17
71 kgde Bod
18
66 kgCosnefroy
19
65 kgMertz
20
70 kgEenkhoorn
21
72 kgWhelan
22
64 kgvan den Berg
23
78 kg
Weight (KG) →
Result →
80
53
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | LAMBRECHT Bjorg | 56 |
2 | POWLESS Neilson | 67 |
3 | KUSS Sepp | 61 |
4 | POLITT Nils | 80 |
5 | MOSCON Gianni | 71 |
6 | GAUDU David | 53 |
7 | POWER Robert | 68 |
8 | VAN AERT Wout | 78 |
9 | HOFSTEDE Lennard | 73 |
10 | MUÑOZ Cristian Camilo | 63 |
11 | SCHULTZ Nick | 68 |
12 | EG Niklas | 60 |
13 | STORK Florian | 65 |
14 | PADUN Mark | 67 |
15 | OWEN Logan | 67 |
16 | CAVAGNA Rémi | 78 |
17 | NIEUWENHUIS Joris | 71 |
18 | DE BOD Stefan | 66 |
19 | COSNEFROY Benoît | 65 |
20 | MERTZ Rémy | 70 |
21 | EENKHOORN Pascal | 72 |
22 | WHELAN James | 64 |
23 | VAN DEN BERG Julius | 78 |