Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
van Aert
1
78 kgRoglič
2
65 kgImpey
3
72 kgBernal
4
60 kgValverde
5
61 kgPogačar
6
66 kgMartin
7
55 kgLutsenko
8
74 kgPinot
9
63 kgHiguita
10
57 kgSchär
11
78 kgAsgreen
12
75 kgBuchmann
13
59 kgCosnefroy
14
65 kgQuintana
15
58 kgArmirail
16
72 kgLópez
17
59 kgMartínez
18
63 kgSoupe
19
70 kgLanda
20
61 kgPorte
21
62 kg
1
78 kgRoglič
2
65 kgImpey
3
72 kgBernal
4
60 kgValverde
5
61 kgPogačar
6
66 kgMartin
7
55 kgLutsenko
8
74 kgPinot
9
63 kgHiguita
10
57 kgSchär
11
78 kgAsgreen
12
75 kgBuchmann
13
59 kgCosnefroy
14
65 kgQuintana
15
58 kgArmirail
16
72 kgLópez
17
59 kgMartínez
18
63 kgSoupe
19
70 kgLanda
20
61 kgPorte
21
62 kg
Weight (KG) →
Result →
78
55
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | VAN AERT Wout | 78 |
2 | ROGLIČ Primož | 65 |
3 | IMPEY Daryl | 72 |
4 | BERNAL Egan | 60 |
5 | VALVERDE Alejandro | 61 |
6 | POGAČAR Tadej | 66 |
7 | MARTIN Guillaume | 55 |
8 | LUTSENKO Alexey | 74 |
9 | PINOT Thibaut | 63 |
10 | HIGUITA Sergio | 57 |
11 | SCHÄR Michael | 78 |
12 | ASGREEN Kasper | 75 |
13 | BUCHMANN Emanuel | 59 |
14 | COSNEFROY Benoît | 65 |
15 | QUINTANA Nairo | 58 |
16 | ARMIRAIL Bruno | 72 |
17 | LÓPEZ Miguel Ángel | 59 |
18 | MARTÍNEZ Daniel Felipe | 63 |
19 | SOUPE Geoffrey | 70 |
20 | LANDA Mikel | 61 |
21 | PORTE Richie | 62 |