Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
van Aert
1
78 kgHayter
2
70 kgVermaerke
3
67 kgPage
4
71 kgLe Gac
6
70 kgVuillermoz
7
60 kgQuinn
8
67 kgVenturini
9
60 kgDelaplace
10
65 kgBoasson Hagen
11
75 kgStuyven
12
78 kgBouet
13
67 kgVan Gils
14
63 kgThomas
15
68 kgHuys
16
61 kgRiabushenko
17
61 kgSteimle
18
73 kgRolland
19
70 kg
1
78 kgHayter
2
70 kgVermaerke
3
67 kgPage
4
71 kgLe Gac
6
70 kgVuillermoz
7
60 kgQuinn
8
67 kgVenturini
9
60 kgDelaplace
10
65 kgBoasson Hagen
11
75 kgStuyven
12
78 kgBouet
13
67 kgVan Gils
14
63 kgThomas
15
68 kgHuys
16
61 kgRiabushenko
17
61 kgSteimle
18
73 kgRolland
19
70 kg
Weight (KG) →
Result →
78
60
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | VAN AERT Wout | 78 |
2 | HAYTER Ethan | 70 |
3 | VERMAERKE Kevin | 67 |
4 | PAGE Hugo | 71 |
6 | LE GAC Olivier | 70 |
7 | VUILLERMOZ Alexis | 60 |
8 | QUINN Sean | 67 |
9 | VENTURINI Clément | 60 |
10 | DELAPLACE Anthony | 65 |
11 | BOASSON HAGEN Edvald | 75 |
12 | STUYVEN Jasper | 78 |
13 | BOUET Maxime | 67 |
14 | VAN GILS Maxim | 63 |
15 | THOMAS Benjamin | 68 |
16 | HUYS Laurens | 61 |
17 | RIABUSHENKO Alexandr | 61 |
18 | STEIMLE Jannik | 73 |
19 | ROLLAND Pierre | 70 |