Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Laporte
1
76 kgVan Gils
2
63 kgAlaphilippe
3
62 kgCarapaz
4
62 kgStannard
5
74 kgWright
6
75 kgTrentin
7
74 kgHerregodts
8
70 kgTesfatsion
9
60 kgZingle
10
67 kgBrenner
11
59 kgvan Poppel
12
82 kgBagioli
13
60 kgGodon
14
74 kgPeters
15
72 kgOnley
16
62 kgChampoussin
17
61 kgGregaard
18
66 kgVan den Bossche
19
63 kgVan Moer
20
79 kgLatour
21
66 kg
1
76 kgVan Gils
2
63 kgAlaphilippe
3
62 kgCarapaz
4
62 kgStannard
5
74 kgWright
6
75 kgTrentin
7
74 kgHerregodts
8
70 kgTesfatsion
9
60 kgZingle
10
67 kgBrenner
11
59 kgvan Poppel
12
82 kgBagioli
13
60 kgGodon
14
74 kgPeters
15
72 kgOnley
16
62 kgChampoussin
17
61 kgGregaard
18
66 kgVan den Bossche
19
63 kgVan Moer
20
79 kgLatour
21
66 kg
Weight (KG) →
Result →
82
59
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | LAPORTE Christophe | 76 |
2 | VAN GILS Maxim | 63 |
3 | ALAPHILIPPE Julian | 62 |
4 | CARAPAZ Richard | 62 |
5 | STANNARD Robert | 74 |
6 | WRIGHT Fred | 75 |
7 | TRENTIN Matteo | 74 |
8 | HERREGODTS Rune | 70 |
9 | TESFATSION Natnael | 60 |
10 | ZINGLE Axel | 67 |
11 | BRENNER Marco | 59 |
12 | VAN POPPEL Danny | 82 |
13 | BAGIOLI Andrea | 60 |
14 | GODON Dorian | 74 |
15 | PETERS Nans | 72 |
16 | ONLEY Oscar | 62 |
17 | CHAMPOUSSIN Clément | 61 |
18 | GREGAARD Jonas | 66 |
19 | VAN DEN BOSSCHE Fabio | 63 |
20 | VAN MOER Brent | 79 |
21 | LATOUR Pierre | 66 |