Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 13
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Cort
1
68 kgPedersen
2
76 kgRoglič
3
65 kgBennett
4
73 kgJorgenson
5
69 kgPage
6
71 kgCiccone
7
58 kgVenturini
8
60 kgLazkano
9
74 kgDoull
10
71 kgTeuns
11
64 kgGazzoli
12
76 kgGarcía Cortina
14
77 kgConca
15
80 kgLe Berre
16
68 kgChampoussin
17
61 kgWright
18
75 kgGrégoire
19
64 kgRusso
20
74 kgArmirail
21
72 kgMartin
22
55 kgDonovan
23
70 kgMeurisse
24
71 kgPedersen
25
71 kg
1
68 kgPedersen
2
76 kgRoglič
3
65 kgBennett
4
73 kgJorgenson
5
69 kgPage
6
71 kgCiccone
7
58 kgVenturini
8
60 kgLazkano
9
74 kgDoull
10
71 kgTeuns
11
64 kgGazzoli
12
76 kgGarcía Cortina
14
77 kgConca
15
80 kgLe Berre
16
68 kgChampoussin
17
61 kgWright
18
75 kgGrégoire
19
64 kgRusso
20
74 kgArmirail
21
72 kgMartin
22
55 kgDonovan
23
70 kgMeurisse
24
71 kgPedersen
25
71 kg
Weight (KG) →
Result →
80
55
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | CORT Magnus | 68 |
2 | PEDERSEN Mads | 76 |
3 | ROGLIČ Primož | 65 |
4 | BENNETT Sam | 73 |
5 | JORGENSON Matteo | 69 |
6 | PAGE Hugo | 71 |
7 | CICCONE Giulio | 58 |
8 | VENTURINI Clément | 60 |
9 | LAZKANO Oier | 74 |
10 | DOULL Owain | 71 |
11 | TEUNS Dylan | 64 |
12 | GAZZOLI Michele | 76 |
14 | GARCÍA CORTINA Iván | 77 |
15 | CONCA Filippo | 80 |
16 | LE BERRE Mathis | 68 |
17 | CHAMPOUSSIN Clément | 61 |
18 | WRIGHT Fred | 75 |
19 | GRÉGOIRE Romain | 64 |
20 | RUSSO Clément | 74 |
21 | ARMIRAIL Bruno | 72 |
22 | MARTIN Guillaume | 55 |
23 | DONOVAN Mark | 70 |
24 | MEURISSE Xandro | 71 |
25 | PEDERSEN Casper | 71 |