Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 17
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Jorgenson
1
69 kgRodríguez
2
67 kgEvenepoel
3
61 kgLazkano
4
74 kgBuitrago
5
59 kgRomo
6
70 kgGrégoire
7
64 kgRafferty
8
65 kgFancellu
9
62 kgArrieta
10
64 kgQuinn
11
67 kgTarling
12
78 kgLeknessund
13
72 kgHollmann
14
70 kgWright
15
75 kgDe Pretto
16
58 kgTurner
17
74 kgLe Berre
18
68 kgBayer
19
71 kgMärkl
20
70 kgParisini
21
65 kgGazzoli
23
76 kgPage
24
71 kg
1
69 kgRodríguez
2
67 kgEvenepoel
3
61 kgLazkano
4
74 kgBuitrago
5
59 kgRomo
6
70 kgGrégoire
7
64 kgRafferty
8
65 kgFancellu
9
62 kgArrieta
10
64 kgQuinn
11
67 kgTarling
12
78 kgLeknessund
13
72 kgHollmann
14
70 kgWright
15
75 kgDe Pretto
16
58 kgTurner
17
74 kgLe Berre
18
68 kgBayer
19
71 kgMärkl
20
70 kgParisini
21
65 kgGazzoli
23
76 kgPage
24
71 kg
Weight (KG) →
Result →
78
58
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | JORGENSON Matteo | 69 |
2 | RODRÍGUEZ Carlos | 67 |
3 | EVENEPOEL Remco | 61 |
4 | LAZKANO Oier | 74 |
5 | BUITRAGO Santiago | 59 |
6 | ROMO Javier | 70 |
7 | GRÉGOIRE Romain | 64 |
8 | RAFFERTY Darren | 65 |
9 | FANCELLU Alessandro | 62 |
10 | ARRIETA Igor | 64 |
11 | QUINN Sean | 67 |
12 | TARLING Joshua | 78 |
13 | LEKNESSUND Andreas | 72 |
14 | HOLLMANN Juri | 70 |
15 | WRIGHT Fred | 75 |
16 | DE PRETTO Davide | 58 |
17 | TURNER Ben | 74 |
18 | LE BERRE Mathis | 68 |
19 | BAYER Tobias | 71 |
20 | MÄRKL Niklas | 70 |
21 | PARISINI Nicolò | 65 |
23 | GAZZOLI Michele | 76 |
24 | PAGE Hugo | 71 |