Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
van der Poel
1
75 kgTronchon
2
72 kgMilan
3
87 kgPogačar
4
66 kgWright
5
75 kgVingegaard
6
58 kgPage
7
71 kgFredheim
8
72 kgVenturini
9
60 kgEvenepoel
10
63 kgOurselin
11
70 kgStewart
13
66 kgFedorov
14
80 kgLouvel
16
77 kgThomas
17
68 kgTrentin
18
74 kgFoldager
19
69 kgPolitt
20
80 kg
1
75 kgTronchon
2
72 kgMilan
3
87 kgPogačar
4
66 kgWright
5
75 kgVingegaard
6
58 kgPage
7
71 kgFredheim
8
72 kgVenturini
9
60 kgEvenepoel
10
63 kgOurselin
11
70 kgStewart
13
66 kgFedorov
14
80 kgLouvel
16
77 kgThomas
17
68 kgTrentin
18
74 kgFoldager
19
69 kgPolitt
20
80 kg
Weight (KG) →
Result →
87
58
1
20
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | VAN DER POEL Mathieu | 75 |
| 2 | TRONCHON Bastien | 72 |
| 3 | MILAN Jonathan | 87 |
| 4 | POGAČAR Tadej | 66 |
| 5 | WRIGHT Fred | 75 |
| 6 | VINGEGAARD Jonas | 58 |
| 7 | PAGE Hugo | 71 |
| 8 | FREDHEIM Stian | 72 |
| 9 | VENTURINI Clément | 60 |
| 10 | EVENEPOEL Remco | 63 |
| 11 | OURSELIN Paul | 70 |
| 13 | STEWART Jake | 66 |
| 14 | FEDOROV Yevgeniy | 80 |
| 16 | LOUVEL Matis | 77 |
| 17 | THOMAS Benjamin | 68 |
| 18 | TRENTIN Matteo | 74 |
| 19 | FOLDAGER Anders | 69 |
| 20 | POLITT Nils | 80 |