Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 111
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Schoonbroodt
2
78 kgStroetinga
3
69 kgRiesebeek
4
78 kgMoberg Jørgensen
13
73 kgJensen
14
67 kgBeukeboom
26
88 kgBakker
28
74.5 kgAriesen
29
70 kgWeinstein
35
80 kgBogdanovičs
38
68 kgMunk
40
67 kgKragh Andersen
45
72 kgSchultz
59
60 kgSergis
60
75 kgToudal
64
72 kgLander
77
70 kg
2
78 kgStroetinga
3
69 kgRiesebeek
4
78 kgMoberg Jørgensen
13
73 kgJensen
14
67 kgBeukeboom
26
88 kgBakker
28
74.5 kgAriesen
29
70 kgWeinstein
35
80 kgBogdanovičs
38
68 kgMunk
40
67 kgKragh Andersen
45
72 kgSchultz
59
60 kgSergis
60
75 kgToudal
64
72 kgLander
77
70 kg
Weight (KG) →
Result →
88
60
2
77
# | Rider | Weight (KG) |
---|---|---|
2 | SCHOONBROODT Bob | 78 |
3 | STROETINGA Wim | 69 |
4 | RIESEBEEK Oscar | 78 |
13 | MOBERG JØRGENSEN Christian | 73 |
14 | JENSEN August | 67 |
26 | BEUKEBOOM Dion | 88 |
28 | BAKKER Dennis | 74.5 |
29 | ARIESEN Johim | 70 |
35 | WEINSTEIN Domenic | 80 |
38 | BOGDANOVIČS Māris | 68 |
40 | MUNK Steffen | 67 |
45 | KRAGH ANDERSEN Asbjørn | 72 |
59 | SCHULTZ Jesper | 60 |
60 | SERGIS Kaspars | 75 |
64 | TOUDAL Emil | 72 |
77 | LANDER Sebastian | 70 |